Let X1 Xn be independent random variables which are U11 and
Let X1, ..., Xn be independent random variables which are U(-1,1) and define
Use Chebyshev\'s inequality to estimate P( |Xn | >= 0.05)
How large must n be for the bound to be less than or equal to 0.05?
Solution
here Xi~U(-1,1) i=1(1)n independently.
so E[Xi]=0 i=1,2,....,n
V[Xi]=(1+1)2/12=1/3 i=1,2,...........,n
so E[Xn]=n*0/n=0
V[Xn]=(V[X1]+V[X2]+.....+V[Xn])/n2=1/3n
Now, by Chebyshev\'s inequality P[|Xn-E[Xn]|>=0.05*sqrt(3n)*1/sqrt(3n)]<=1/{0.05*sqrt(3n)}2
or, P[|Xn|>=0.05]<=1/{0.05*sqrt(3n)}2 [answer]
now given that 1/{0.05*sqrt(3n)}2=0.05 or,1/(0.0025*3n)=0.05 or, 0.0025*3n=1/0.05=20 or, 3n=20/0.0025=8000 or, n=8000/3=2666.667~2667 [answer]
