Derive a formula for tanx2 in terms of cosa Find the exact v
Derive a formula for tan(x/2) in terms of cos(a). Find the exact value of cos(37.5) and simplify completely. If cos(a + b) = 0, 0
Solution
4) tan(x/2) in terms of cosx
cosx = 2cos^2(x/2) -1
cos(x/2) = sqrt[(1+cosx)/2]
cosx = 1- 2sin^2(x/2)
sin(x/2) = sqrt[(1- cosx)/2]
So, tan(x/2) = sin(x/2) /cos(x/2) = sqrt{ [(1- cosx)/(1+cosx)]
5) cos(37.5)
cos(37.5) = cos(75/2) = sqrt[ (1+cos75)/2]
cos75 = cos(45 +30) = cos45cos30 - sin45sin30
=(1/sqrt2)(sqrt3/2) - (1/sqrt2)(1/2)
= ( sqrt3 -1)/2sqrt2
So, cos(37.5) = cos(75/2) = sqrt[ (1+cos75)/2]
= sqrt[ ( 1+ ( sqrt3 -1)/2sqrt2)/2 ]
= sqrt[ (4sqrt2 + sqrt3 -1)/sqrt2]/2
