the probability that a child is handicapped is 103 find the

the probability that a child is handicapped is 10^-3 find the probability p1 that in a school of 1800 children, one is handicapped, and the probability p2 that more than two children are handicapped: (a) exactly; (b) using approximation.

Solution

A) EXACTLY, using binomial distribution:

For p1:

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    1800      
p = the probability of a success =    0.001      
x = the number of successes =    1      
          
Thus, the probability is          
          
P (    1   ) =    0.297567724 [ANSWER, p1]

....

For p2:

Note that P(more than x) = 1 - P(at most x).          
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    1800      
p = the probability of a success =    0.001      
x = our critical value of successes =    2      
          
Then the cumulative probability of P(at most x) from a table/technology is          
          
P(at most   2   ) =    0.730647909
          
Thus, the probability of at least   3   successes is  
          
P(more than   2   ) =    0.269352091 [ANSWER, p2]

***********************************************************

b)

Using Poisson approximation,

u (mean) = n p = 1800*0.001 = 1.8.


For p1:

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    1.8      
          
x = the number of successes =    1      
          
Thus, the probability is          
          
P (    1   ) =    0.297537999 [ANSWER, p1]

.....

For p2:

Note that P(more than x) = 1 - P(at most x).          
          
Using a cumulative poisson distribution table or technology, matching          
          
u = the mean number of successes =    1.8      
          
x = our critical value of successes =    2      
          
Then the cumulative probability of P(at most x) from a table/technology is          
          
P(at most   2   ) =    0.730621086
          
Thus, the probability of at least   3   successes is  
          
P(more than   2   ) =    0.269378914 [ANSWER, p2]

the probability that a child is handicapped is 10^-3 find the probability p1 that in a school of 1800 children, one is handicapped, and the probability p2 that
the probability that a child is handicapped is 10^-3 find the probability p1 that in a school of 1800 children, one is handicapped, and the probability p2 that

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site