The polynomial Px4 x3 3 x2 2 x has local maxima and minima
The polynomial P(x)=4 x^3 + 3 x^2 - 2 x has......................? local maxima and minima.
Solution
Solution : polynomial
P(x)=4x^3+3x^2-2x
Differentiate this polynomial w.r.t. x , to get
P\'(x)=12x^2+6x-2
For maxima or minima, P\'(x)=0
12x^2+6x-2=0
6x^2+3x-1=0
x=(-3+-sqrt(9+24))/12
Or x=(-3+-sqrt (30))/12
Or. x=(-3+30)/12, (-3-30)/12
Again differentiate, to get P\"(x)=24x+6.
For x=(-3+30)/12
P\"(x)=24(-3+30)/12 + 6
=-6+30+6
=+ vie
Therefore at x = (-3+30)/12 the polynomial is local minima.
Similarly, the point x=( -3-30)/12 is local maxima.
