Heights of males are approximately normally distributed with
Solution
(a)
P(X>c)=0.015
--> P((X-mean)/s <(c-175)/10)=1-0.015=0.985
--> P(Z<(c-175)/10)=0.985
--> (c-175)/10= 2.17 (from standard normal table)
So c= 175+2.17*10=196.7
---------------------------------------------------------------------------------------------------------------------
(b)P(180<X<185) = P((180-175)/10<Z<(185-175)/10)
=P(0.5<Z<1)
=0.1499 (from standard normal table)
---------------------------------------------------------------------------------------------------------------------
(c) P(X>180)= P(Z>(180-175)/10) = P(Z>0.5) =0.3085 (from standard normal table)
mean=n*p=300*0.3085 =92.55
standard deviation =sqrt(n*p*(1-p))=sqrt(300*0.3085*(1-0.3085))=7.999895
So the probability is
P(X>=100) = P(Z>(100-92.55)/7.999895)
=P(Z>0.93) =0.1762 (from standard normal table)
---------------------------------------------------------------------------------------------------------------------
(d)P(X>180) = P(Z>(180-165)/10)
=P(Z>1.5)
=0.0668 (from standard normal table)
i.e. 6.68%
