cos12xsin2xcos52xsin2xsin4x cosxSolutioncos12x sin2x cos52x
cos^1/2xsin^2x-cos5/2xsin^2x=sin^4x cosx
Solution
cos1/2x sin2x - cos5/2xsin2x = sin4x cosx
consider cos1/2x sin2x - cos5/2x sin2x
==> cos1/2x sin2x - cos1/2 +2 x sin2x
==> cos1/2x sin2x - cos1/2x cos2x sin2x since am+n = am an
==> cos1/2x [ sin2x - cos2xsin2x]
==> cos1/2x sin2x [ 1 - cos2x]
==> cos1/2x sin2x (sin2x) ; since sin2x + cos2x = 1==> sin2x = 1 - cos2x
==> cos1/2x sin2+2x ; since am an = am+n
==> cos1/2x sin4x
==> cosx sin4x
Hence cos1/2x sin2x - cos5/2xsin2x = sin4x cosx
