Use the dual simplex method to solve the following LP minimz
Use the dual simplex method to solve the following LP.
minimze z= 3x1+2x2+3
s.t
3x1+x2+x33
-3x1+3x2+x26
x1+x2+x33
Solution
minimze z= 3x1+2x2+3
s.t
3x1+x2+x33
-3x1+3x2+x36
x1+x2+x33
I equation + II equation give
4x2+2x3>=9
Also x2+x3 >= 3-3x1 >= 3-(6-3x2-x3)
i.e. x2+x3 >= -3+3x2+x3
-2x2>=-3
Or x2 <= 1.5
x3>=1.5
Hence corner points are (0, 1.5,1.5) (-1, 0, 3) and (-1,3,0)
Values of z are
i) 6
ii) 0
iii) 9
Hence optimal solution is (x1,x2,x3) = (-1, 0, 3)
