Exercise I Consider the vector space R over R Let T R R be
Exercise (I): Consider the vector space R over R.
Let T : R R be a function defined by T(a1, a2, a3, . . .) = (0, a1, a2, a3, . . .) for all sequences (an) R .
(1) Prove that T is a linear transformation.
(2) Prove that T is one-to-one by showing that N(T) = {(0, 0, 0, . . .)}.
(3) Prove that T is NOT onto.
Solution
1)
a. T(a1+b1,a2+b2,a3+b3,....)=(0,a1+b1,a2+b2,...)=(0,a1,a2,...)+(0,b1,b2,...)=T(a1,a2,..)+T(b1,b2,..)
b. T(ca1,ca2,ca3,....)=(0,ca1,ca2,...)=c(0,a1,a2,...)=cT(a1,a2,..)
Hence T is linear
2.
T(a1,a2,a3,....)=(0,a1,a2,...)=(0,0,0,0,...)
Hence, a1=a2=a3=...=0
Hence, N(T)={(0,0,0,...)}
3)
T is not onto as it maps only to sequences of the form: (0,a1,a2,...)
eg. (1,0,0,0,...) is not in the image
