1 point If sect1 Acost sect1 A cost COS then A Solutionsec t
(1 point) If sect-1 A-cost sect1 A+ cost COS then A
Solution
(sec t-1)/(sec t+1)= (A- cos t)/(A+cost)
starting with left side and using 1/cos t for sec t we get
(1/cos t -1)/(1/cos t + 1)
(1/cos t)/cost/(1+cos t)/cos t
1-cos t/1+cos t
comparing it with right side
we get A=1
b) (tan x + sec x)^2= (A + sin x)/(B-sinx)
starting with left side and using sinx/cosx for tan x and 1/cos x for sec x we get
(sinx/ cos x + 1/cos x)^2
((1+sinx)/cosx)^2
(1+ sinx )^2/cos^2 x
(1+sinx)(1+sinx)/(1+sinx)(1-sinx)
(1+sinx)/(1-sinx)
Comparing it with right side we get
A=1 and B=1
