1 point If sect1 Acost sect1 A cost COS then A Solutionsec t

(1 point) If sect-1 A-cost sect1 A+ cost COS then A

Solution

(sec t-1)/(sec t+1)= (A- cos t)/(A+cost)

starting with left side and using 1/cos t for sec t we get

(1/cos t -1)/(1/cos t + 1)

(1/cos t)/cost/(1+cos t)/cos t

1-cos t/1+cos t

comparing it with right side

we get A=1

b) (tan x + sec x)^2= (A + sin x)/(B-sinx)

starting with left side and using sinx/cosx for tan x and 1/cos x for sec x we get

(sinx/ cos x + 1/cos x)^2

((1+sinx)/cosx)^2

(1+ sinx )^2/cos^2 x

(1+sinx)(1+sinx)/(1+sinx)(1-sinx)

(1+sinx)/(1-sinx)

Comparing it with right side we get

A=1 and B=1

 (1 point) If sect-1 A-cost sect1 A+ cost COS then A Solution(sec t-1)/(sec t+1)= (A- cos t)/(A+cost) starting with left side and using 1/cos t for sec t we get

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site