1 find all the solution of the equation z3 8 abstract alge
1 find all the solution of the equation z^3 = -8 ( abstract algebra)
2 write the given complex number z = -1+i and z = -1-i in the polar form
Solution
z^3 = -8
z^3 = -8 + 0i
z^3 = 8(cos(pi + 2pi*k) + isin(pi + 2pi*k))
Cube-rooting both sides and using DeMorgan\'s law :
z = 2(cos[pi + 2pik/3] + isin[pi + 2pik]/3)
Plug in k = 0 :
2(cos(pi/3) + isin(pi/3))
2[1/2 + i*sqrt3/2)
1 + i*sqrt(3) ----> first solution
Plug in k = 1 :
2[cos(pi) + isin(pi)]
2(-1 + 0i)
-2 ---> second solution
Plug in k = 2 :
2[cos(5pi/3) + isin(5pi/3)]
2(1/2 + i*-sqrt3/2)
1 - i*sqrt(3) ---> third solution
So, solutions are :
1 + i*sqrt3
-2
1 - i*sqrt3
-------------------------------------------------------------
z = -1 + i
z = x + iy
Comparing, x = -1, y = 1
r = sqrt(x^2 + y^2) ---> sqrt(2)
theta = atan(y/x) = 3pi/4
So, sqrt2(cos(3pi/4) + i*sin(3pi/4)) ---> first polar form
z = -1 - i
x = -1, y = -1
r = sqrt(2)
theta = 5pi/4
sqrt(2) * (cos(5pi/4) + i*sin(5pi/4)) ---> second polar form
