Gaussian distribution A Gaussian random variable X has param
Gaussian distribution] A Gaussian random variable X has parameters mu x = 4 and sigma X = 2. Find P(|X| > 2). Also find P(|X|ge 2).
Solution
A random variable X has Gaussian distribution with parameter µx = 4 and x = 2.
A Gaussian distribution is nothing but the normal distribution.
We have to calculate P( IXI > 2 ) and P ( IXI 2 ).
P( IXI > 2 ) = P( -2 < X < 2)
= P( (-2 - µ) / < (X- µ ) / < (2 - µ ) / )
= P ( (-2 - 4) / 2 < Z < (2 - 4) / 2 )
= P ( -3 < Z <-1 )
= P ( Z < -1) - P ( Z < -3)
This probability we can calculate using EXCEL.
Command : =NORMDIST(z)
= 0.158655 - 0.00135
= 0.157305
P( IXI 2) = P ( -2 X 2 )
= P ( X 2 ) - P ( X -2)
= P ( X -1 ) - P ( X -3)
= 0.157305
![Gaussian distribution] A Gaussian random variable X has parameters mu x = 4 and sigma X = 2. Find P(|X| > 2). Also find P(|X|ge 2).SolutionA random variable Gaussian distribution] A Gaussian random variable X has parameters mu x = 4 and sigma X = 2. Find P(|X| > 2). Also find P(|X|ge 2).SolutionA random variable](/WebImages/26/gaussian-distribution-a-gaussian-random-variable-x-has-param-1068333-1761559217-0.webp)