Make the indicated trigonometric substitution in squareroot
Solution
x = 5sec(theta)
sqrt[( x^2 - 25)]/x
Substitute x in above formula:
sqrt[( 25sec^2(theta) - 25)]/5sectheta
= 5 sqrt(sec^2theta -1)/5sectheta
we know that : 1 +tan^2theta = sec^2theta
So, sqrt(sec^2theta -1)/sectheta
sqrt(tan^2(theta)/sectheta
= tan(theta)/sectheta
= sin(theta)
