A Random Sample of 17 Womens resting pulse rates from the na

A Random Sample of 17 Women\'s resting pulse rates from the national health and nutrition examination survey showed a mean of 73.5 beats per minute and a standard deviation of 17.1.

a.) What assumptions must you make in order to use these statistics for inference?

b.)Find a 90% confidence interval for the mean pulse rate of women

c.) Explain in context what this confidence interval means

d.) Explain what 90% confidence interval means in this context.

e.) A researcher commented that the interval was too wide. If he wants a margin of error for the mean resting pulse rates to be no more than +-1.5, what sample size should be taken?

Solution

a)

We assume that the data is approximately normally distirbuted.

b)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    73.5          
t(alpha/2) = critical t for the confidence interval =    1.745883676          
s = sample standard deviation =    17.1          
n = sample size =    17          
df = n - 1 =    16          
Thus,              
Margin of Error E =    7.240806706          
Lower bound =    66.25919329          
Upper bound =    80.74080671          
              
Thus, the confidence interval is              
              
(   66.25919329   ,   80.74080671   ) [ANSWER]

*******************

c)

We are 90% confident that the true mean pulse rate of women is between 66.26 and 80.74.

********************

d)

We are 90% confident that the true mean pulse rate of women is between 66.26 and 80.74. [Is this really different from c, or is it a typo?]

***********************

E)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.05  
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
s = sample standard deviation =    17.1  
E = margin of error =    1.5  
      
Thus,      
      
n =    351.6124273  
      
Rounding up,      
      
n =    352   [ANSWER]

A Random Sample of 17 Women\'s resting pulse rates from the national health and nutrition examination survey showed a mean of 73.5 beats per minute and a standa
A Random Sample of 17 Women\'s resting pulse rates from the national health and nutrition examination survey showed a mean of 73.5 beats per minute and a standa

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site