While writing her Ph D dissertation a doctoral student makes
Solution
There is 1 typo every 350 words.
Thus, for a binomial distrbution:
n = 4*250 = 1000 words
 p = 1/350 = 0.002857143
 x >= 2
*********************
For a Poisson distribution:
There are, on average, 1*(250*4/350) = 2.857142857 typos in 4 pages.
Thus, we want P(x>=2).
*********************
The easier way is the Poisson way, so:
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    2.857142857      
           
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   1   ) =    0.221525817
           
 Thus, the probability of at least   2   successes is  
           
 P(at least   2   ) =    0.778474183 [ANSWER]

