According to the regional bar association aproximately 60 of
According to the regional bar association, aproximately 60% of the people that take the bar exam to practice law in the region pass the exam. Find the aproximate probability that atleast 62% of 300 randomly sampled people taking the bar exam will pass.
Using the normal approximation, what is the probability that atleast 62% of 300 randomly sampled people takind the bar exam will pass.
Round to three decimal places as needed
Solution
Here, the standard deviation of proportions is
s(p^) = sqrt(p(1-p)/n) = sqrt(0.60*(1-0.60)/300) = 0.028284271
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.62      
 u = mean =    0.6      
           
 s = standard deviation =    0.028284271      
           
 Thus,          
           
 z = (x - u) / s =    0.707106787      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.707106787   ) =    0.239750059 [ANSWER]

