Families USA a monthly magazine that discusses issues relate
Families USA, a monthly magazine that discusses issues related to health and health costs, surveyed 22 of its subscribers. It found that the annual health insurance premiums for a family with coverage through an employer averaged $10,800. The standard deviation of the sample was $1,060. (Use z Distribution Table.)
a. Based on this sample information, develop a 90% confidence interval for the population mean yearly premium. (Round your answers to the nearest whole number.)
Confidence interval for the population mean yearly premium is between $ and $ .
b. How large a sample is needed to find the population mean within $240 at 90% confidence? (Round up your answer to the next whole number.)
Sample size
Solution
a)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    10800          
 z(alpha/2) = critical z for the confidence interval =    1.64          
 s = sample standard deviation =    1060          
 n = sample size =    22          
               
 Thus,              
 Margin of Error E =    370.6281253          
 Lower bound =    10429.37187          
 Upper bound =    11170.62813          
               
 Thus, the confidence interval is              
               
 (10429   ,   11171) [ANSWER]
******************
b)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.05  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.64  
       
 Also,      
       
 s = sample standard deviation =    1060  
 E = margin of error =    240  
       
 Thus,      
       
 n =    52.46587778  
       
 Rounding up,      
       
 n =    53   [ANSWER]


