The Rockwell hardness of a metal is determined by impressing
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    62      
 x2 = upper bound =    74      
 u = mean =    68      
           
 s = standard deviation =    3      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2      
 z2 = upper z score = (x2 - u) / s =    2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.977249868      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.954499736   [ANSWER]
*****************
b)
For the middle 95%, the corresponding z value is, by table/technology,
z = 1.959963985
Thus,
c = z*sigma = 1.959963985*3 = 5.879891954 [ANSWER]
******************
c)
E(x) = n p = 10*0.954499736 = 9.54499736 [ANSWER]
*******************
d)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    70.52      
 u = mean =    68      
           
 s = standard deviation =    3      
           
 Thus,          
           
 z = (x - u) / s =    0.84      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   0.84   ) =    0.799545807
Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    10      
 p = the probability of a success =    0.799545807      
 x = the maximum number of successes =    8      
           
 Then the cumulative probability is          
           
 P(at most   8   ) =    0.62556042 [ANSWER]
   


