Teenagers ages 12 to 17 are much more likely to use instant
Teenagers (ages 12 to 17) are much more likely to use instant messaging online than are adults (ages 18 and older). How much more likely? A random sample of Internet users found that 761 out of 942 teens and 468 out of 1228 adults use instant messaging.
Solving the problem step by step, find the following values (±0.0001).
Solution
Formulating the hypotheses          
 Ho: p1^ - p2^   <=   0  
 Ha: p1^ - p2^   >   0  
 Here, we see that pdo =    0   , the hypothesized population proportion difference.  
           
 Getting p1^ and p2^,          
           
 p1^ = x1/n1 =    0.807855626 [answer]      
 *************************************
 p2^ = x2/n2 =    0.381107492 [answer]
 ****************************************      
           
 Also, the standard error of the difference is          
           
 sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.018890591 [answer]
********************************************
Lower Bound = (p1^-p2^) - z(alpha/2) * se              
 Upper Bound = (p1^-p2^) + z(alpha/2) * se              
               
 where              
               
 alpha/2 = (1 - confidence level)/2 =    0.025          
               
 Thus,              
 (p1^-p2^) = sample mean =    0.426748134  
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 se = standard error =    0.018890591          
               
               
 Thus,              
               
 Lower bound =    0.389723256          
 Upper bound =    0.463773012          
               
 Thus, the confidence interval is              
               
 (   0.389723256   ,   0.463773012   ) [answer]
       

