A random sample of n measurements was selected from a popula

A random sample of n measurements was selected from a population with standard deviation =16.6 and unknown mean . Calculate a 99 % confidence interval for for each of the following situations:
a)n=65, x=96.3
b) n=85, x=96.3
c) n=110, x=96.3

Solution

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    96.3          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    16.6          
n = sample size =    65          
              
Thus,              
Margin of Error E =    5.303572247          
Lower bound =    90.99642775          
Upper bound =    101.6035722          
              
Thus, the confidence interval is              
              
(   90.99642775   ,   101.6035722   ) [ANSWER]

*******************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    96.3          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    16.6          
n = sample size =    85          
              
Thus,              
Margin of Error E =    4.63783939          
Lower bound =    91.66216061          
Upper bound =    100.9378394          
              
Thus, the confidence interval is              
              
(   91.66216061   ,   100.9378394   ) [ANSWER]

***********************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    96.3          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    16.6          
n = sample size =    110          
              
Thus,              
Margin of Error E =    4.076888416          
Lower bound =    92.22311158          
Upper bound =    100.3768884          
              
Thus, the confidence interval is              
              
(   92.22311158   ,   100.3768884   ) [ANSWER]

A random sample of n measurements was selected from a population with standard deviation =16.6 and unknown mean . Calculate a 99 % confidence interval for for e
A random sample of n measurements was selected from a population with standard deviation =16.6 and unknown mean . Calculate a 99 % confidence interval for for e

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site