When 650 college students were surveyed 495 said they owned
When 650 college students were surveyed, 495 said they owned a computer.
 Construct a 98% confidence interval for the proportion of college students who own a
 computer.
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.761538462          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.016714693          
               
 Now, for the critical z,              
 alpha/2 =   0.01          
 Thus, z(alpha/2) =    2.326347874          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.72265427          
 upper bound = p^ + z(alpha/2) * sp =    0.800422653          
               
 Thus, the confidence interval is              
               
 (   0.72265427   ,   0.800422653   ) [ANSWER]

