ABCD are the vertex of a regular polygon Supposing that 1AB1
A,B,C,D,... are the vertex of a regular polygon. Supposing that 1/AB=(1/AC)+(1/AD), then how many sides has the polygon?
Solution
If n is the number of polygon\'s sides, R is the radius of the circumscribed circle and x=pi/n, then we can write AB=2Rsinx, AC=2Rsin2x, AD=2Rsin3x.
From the expression 1/AB=(1/AC)+(1/AD), we\'ll have:
1/sin x= (1/sin 2x) + (1/sin 3x)
Having the same denominator, both sides of equation, we\\ll have:
sin 2x*sin 3x= sin x* sin 3x + sin x*sin 2x
We\'ll have the common factor sin x and we\'ll write
sin2x=2sinx cos x
2sinx cos x sin 3x=sin x(sin 3x + sin 2x)
We\'ll simplify with sin x
2 cos x sin 3x=(sin 3x + sin 2x)
We\'ll transform the product in sum
2 cos x sin 3x=sin((x+3x)/2)-sin((x-3x)/2)=sin 2x+sin x
sin 2x+sin x=sin 3x + sin 2x
sin 3x - sin x =0
2cos2xsinx=0
x=2kpi
x=2kpi/7 + pi/7
x=pi/n, so n=7
