In a random sample of 120 male customers at Burger Queen 84
In a random sample of 120 male customers at Burger Queen, 84 ordered fries with their with their burgers.
a) Find the p-value of the test H 0 : p = 0.77 vs. H 1 : p 0.77, where p is the proportions of male customers who order fries with their burgers.
b) Suppose also that in a random sample of 80 female customers, 48 ordered fries with their burgers. Find the p-value of the test H 0 : p M = p F vs. H 1 : p M > p F .
Solution
a)
Formulating the null and alternatuve hypotheses,          
           
 Ho:   p   =   0.77
 Ha:   p   =/=   0.77
 As we see, the hypothesized po =   0.77      
 Getting the point estimate of p, p^,          
           
 p^ = x / n =    0.7      
           
 Getting the standard error of p^, sp,          
           
 sp = sqrt[po (1 - po)/n] =    0.038416576      
           
 Getting the z statistic,          
           
 z = (p^ - po)/sp =    -1.8221301      
           
 As this is a    2   tailed test, then, getting the p value,  
           
 p =    0.068435247   [ANSWER]
***********************
b)
Formulating the hypotheses          
 Ho: p1^ - p2^   <=   0  
 Ha: p1^ - p2^   >   0  
 Here, we see that pdo =    0   , the hypothesized population proportion difference.  
           
 Getting p1^ and p2^,          
           
 p1^ = x1/n1 =    0.7      
 p2 = x2/n2 =    0.6      
           
 Also, the standard error of the difference is          
           
 sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.068920244      
           
 Thus,          
           
 z = [p1 - p2 - pdo]/sd =    1.4509525      
           
           
 Also, the p value is, using the right tailed area,          
           
 P =    0.073396544   [ANSWER]
   

