Assume the gestation period approximates a normal curve with
Assume the gestation period approximates a normal curve with a mean of 270 days and a standard deviation of 15 days. What proportion of gestation periods will be:
Between 240 days and 260 days?
Greater than 290 days?
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    240      
 x2 = upper bound =    260      
 u = mean =    270      
           
 s = standard deviation =    15      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2      
 z2 = upper z score = (x2 - u) / s =    -0.666666667      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.252492538      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.229742406   [answer]
***************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    290      
 u = mean =    270      
           
 s = standard deviation =    15      
           
 Thus,          
           
 z = (x - u) / s =    1.333333333      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.333333333   ) =    0.09121122 [answer]
   

