A realtor in Mission Viejo California wants to estimate the
A realtor in Mission Viejo, California, wants to estimate the average price of a house in the city.
House Price
 430
 520
 460
 475
 670
 521
 670
 417
 533
 525
 538
 370
 530
 525
 430
 330
 575
 555
 521
 350
 399
 560
 440
 425
 669
 660
 702
 540
 460
 588
 445
 412
 735
 537
 630
 430
a.
Open the Excel file using the link above (data are in $1,000s). Assume the population standard deviation is $100 (in $1,000s). Calculate the sample mean. (Do not round intermediate calculations. Round your answer to 2 decimal places.)
b.
Construct a 90% and a 99% confidence interval for the average house price. (Use rounded sample mean. Do not round intermediate calculations. Round \"z\" value and final answers to 2 decimal places.)
Solution
Getting the mean, X,      
       
 X = Sum(x) / n      
 Sum(x) =    18577  
As n = 36,
   
 Thus,      
 X =    516.0277778 = 516.03 [ANSWER]
*************
B)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    516.03          
 z(alpha/2) = critical z for the confidence interval =    1.64          
 s = sample standard deviation =    100          
 n = sample size =    36          
               
 Thus,              
               
 Lower bound =    488.6966667          
 Upper bound =    543.3633333          
               
 Thus, the confidence interval is              
               
 (   488.70   ,   543.36   ) [ANSWER, 90% CONFIDENCE]
*****************
B)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    516.03          
 z(alpha/2) = critical z for the confidence interval =    2.58          
 s = sample standard deviation =    100          
 n = sample size =    36          
               
 Thus,              
               
 Lower bound =    473.03          
 Upper bound =    559.03          
               
 Thus, the confidence interval is              
               
 (   473.03   ,   559.03   ) [ANSWER, 99% CONFIDENCE INTERVAL]


