Find an explicit solution of the given initialvalue problem
Find an explicit solution of the given initial-value problem.
Find an explicit solution of the given initial-value problem. root 1-y^2 dx - root 1-x^2 dy = 0,y (0), y (0) = root 2/2Solution
Rewriting :
dy/srt(1 - y^2) = dx/sqrt(1 - x^2)
Integrating :
arcsin(y) = arcsin(x) + C
y = sin[arcsin(x) + C]
y(0) = sqrt2/2 :
sqrt2/2 = sin[arcsin(0) + C]
arcsin(sqrt2/2) = 0 + C
pi/4 = C
So, solution, y = sin[arcsin(x) + C]
becomes
y = sin(arcsin(x) + pi/4) ---> ANSWER
