The lifetime of a certain type of battery has mean value 12h
The lifetime of a certain type of battery has mean value 12hours and standard deviation 1 hour. There are 36 batteries in a package.
a) By central limit theorem, the average _______ will be normally distributed.
A. Lifetime of any randomly selected ALL batteries in a package (36 counts)
B.Lifetime of ALL batteries of this certain type
b)What lifetime value is such that the average lifetime of ALL batteries in a package exceeds that value for only 5% of all packages? (hint: to find a VALUE)
c)What lifetime value is such that the TOTAL lifetime of ALL batteries in a package exceeds that value for only 5% of all packages?
Solution
a)
A. Lifetime of any randomly selected ALL batteries in a package (36 counts)
[The central limit theorem talks about samples, not individuals, so it is OPTION A.]
******************************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    12      
 z = the critical z score =    1.644853627      
 s = standard deviation =    1      
 n = sample size =    36      
 Then          
           
 x = critical value =    12.27414227   [ANSWER]
***************************
c)
Multiplying the critical value in (b) to get the total lifetime of 36 batteries,
critical sum = 12.27414227*36 = 441.8691217 [ANSWER]
   

