Given Px 2x4 15x3 39x2 41x 15 a List all the possible r
Given P(x) = 2x^4 - 15x^3 + 39x^2 - 41x + 15, (a) List, all the possible rational zeros of P(x).
Solution
P(x) = 2x4 - 15x3 + 39x2 - 41x + 15
By observation, P(1) =0 => (x - 1) is a factor of P(x)
Hence,
P(x) = 2x4 - 15x3 + 39x2 - 41x + 15
= 2x4 - 2x3 - 13x3 + 13x2 + 26x2 - 26x - 15x +15
= 2x3(x-1) - 13x2(x-1) +26x(x-1) -15(x-1)
= (2x3 - 13x2 + 26x - 15)(x-1)
=(x-1) { 2x3 - 2x2 - 11x2 + 11x + 15x -15 }
=(x-1) { 2x2(x-1) - 11x(x-1) + 15(x-1)}
=(x-1)2(2x2 -11x + 15)
=(x-1)2(2x2 - 6x - 5x + 15)
=(x-1)2 { 2x (x-3) - 5(x-3) }
= (x-1)2(x-3)(2x-5)
Hence P(x) = 0 has 4 rational zeros and they are 1, 1, 3, 5/2.
