If sin t 38 7 and cos t 18 find the sine and cosine of the
     If sin t = -3/8  7, and cos t = 1/8, find the sine and cosine of the given values. (a) t + pi sin(t + pi) =  cos(t + pi) =  (b) -t sin(-t) =  cos(-t) =  (c) t + pi/2 sin(t + pi/2) =  cos(t + pi/2) =  (d) -t + pi/2 sin(-t + pi/2) =  cos(-t + pi/2) =   
  
  Solution
sint = - 3sqrt7/8 ; cost = 1/8
a) sin(t +pi)
As we know sin(180 +x) = -sinx
So, sin(t +pi) = -sint = 3sqrt7/8
b) sin(-t)
As sin(-x) = -sinx
So, sin(-t) = 3sqrt(7)/8
c) sin(t +pi/2) = cost
sin(t +pi/2) = cost = 1/8
d) sin( -t +pi/2)
as we know : sin (90 -x) = cosx
So, sin(pi/2 -t) = cost = 1/8

