Can you prove using the pumping lemma that the followint lan
Can you prove using the pumping lemma that the followint languages are non-regular?
L_1 = {0^i 1^j | i > j}. (beta) L_2 = {1^n^2 | n greaterthanorequalto 0}. (gamma) L_3 = {1^n^i | n greathanorequalto 0}.Solution
Pumping lemma principle :
Assume every word in the given language L (noted word as w here) is in the format xyz & length of |xyz| =n.
i.e ) w= xyz
if the above word satisfies below 3 rules then the given language is regular other wise it is not regular.
1. |y|>=1 //length of y greater than or equal to 1
2.|xy|<=n
3. for all i 0, xy i z L
a) L1={0i1j | i>j}
if i=1,j=0 < i then w=0
if i=2,j=1< i then w=001,
if i=3,j=2<0 the w=00011 , etc….
Now L1 ={0, 001,00011,0000111,000001111,………}
Apply pumping lemma
Consider w= 00011 (xyz format--à |y|>=1, |xy|<=n (n=|xyz|) )
Assume x=00,
y=01, |y|>=1
z=1
Now Apply pumping lemma 3rd rule by taking i=2 (for all i 0, xy i z L )
Now W= 00 (01)2 1= 00 0101 1
(This word does not belongs to L .so the language is not regular )
b) L1={1n2 | n>=0}
if n=0 then w=1
if n=1 then w=11
if n=2 then w=1111, etc….
Now L1 ={ 1,11,1111,111111111,………}
Apply pumping lemma
Consider w= 1111 (xyz format--à |y|>=1, |xy|<=n (n=|xyz|) )
Assume x=1,
y=11, |y|>=1
z=1
Now Apply pumping lemma 3rd rule by taking i=2 (for all i 0, xy i z L )
Now W= 1 (11)2 1= 111111
(This word does not belongs to L .so the language is not regular )
C) L1={1n! | n>=0}
if n=0 then w=1
if n=1 then w=1
if n=2 then w=11
if n=3 then w=111111, etc….
Now L1 ={ 1,11,111111,11111111111111111111111,………}
Apply pumping lemma
Consider w= 111111 (xyz format--à |y|>=1, |xy|<=n (n=|xyz|) )
Assume x=111,
y=11, |y|>=1
z=1
Now Apply pumping lemma 3rd rule by taking i=2 (for all i 0, xy i z L )
Now W= 111 (11)2 1= 111111 11
(This word does not belongs to L .so the language is not regular )

