A random sample of 27 people employed by the Florida state a
A random sample of 27 people employed by the Florida state authority established they earned an average wage (including benefits) of $63.00 per hour. The sample standard deviation was $6.11 per hour. (Use z Distribution Table.)
Develop a 95% confidence interval for the population mean wage (including benefits) for these employees. (Round your answers to 2 decimal places.)
How large a sample is needed to assess the population mean with an allowable error of $2.00 at 90% confidence? (Round up your answer to the next whole number.)
| a. | What is the best estimate of the population mean? | 
Solution
a) It is the sample mean, 63.00 [ANSWER]
******************
b)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    63          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    6.11          
 n = sample size =    27          
               
 Thus,              
 Margin of Error E =    2.304662945          
 Lower bound =    60.69533705          
 Upper bound =    65.30466295          
               
 Thus, the confidence interval is              
               
 (   60.69533705   ,   65.30466295   ) [ANSWER]
 ****************************
c)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.05  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.644853627  
       
 Also,      
       
 s = sample standard deviation =    6.11  
 E = margin of error =    2  
       
 Thus,      
       
 n =    25.2509047  
       
 Rounding up,      
       
 n =    26 [ANSWER]
   


