Discrete Logarithms 1 Let p 53047 Verify that L38576 1234
Discrete Logarithms
1. Let p = 53047. Verify that L3(8576) = 1234.
2. Let p = 31. Evaluate L3(24).
Solution
1. p =53047
L3(8576)
Now according L3(8576) =1234
base = 3, a= 8576
suppose Logb(a) = x
then discrete logorithm is logb(a) = n mod p
so now a = b^n (mod p)
substituting values => 8576 = 3^1234 (mod 53047)
=> 8576 = 8576
=> LHS = RHS HENCE Proved.
2 . p=31 so L3(24)
base = 3 , p = 31
so 24 = 3^n mod(31)
=> apply log
=> log 3(24) = n mod(31)
=> log(24) / log(3) = n mod(31)
=> 0.477121 = n mod(31)
=> 1/n = (1/0.477121) mod(31) Just exchange the n to other side and (0.477121) of the side
=> 1/n = 2.095904 mod(31) = 2.095904
=> 1/n = 2.095904
=> 1/2.095904 = n
=> n = 0.4777121

