A census of persons recovering from lowerextremity fractures
A census of persons recovering from lower-extremity fractures find that during the first six months of recovery they spend a mean of 8 hours per week working, with a standard deviation of 2 hours per week. Assume that the numver of weekly work hours is normally distributed.
(A) What proportion of persons in the first 6 months of recovery from lower-extremity fractures spend at least 10.5 hours per week working?
(B) If We were to Select a random sample of 40 persons in the first 6 months of recovery from lower-extremity fractures what is the probability that their sample mean weekly time spent working will be less than 6.5?
Solution
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    10.5      
 u = mean =    8      
           
 s = standard deviation =    2      
           
 Thus,          
           
 z = (x - u) / s =    1.25      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.25   ) =    0.105649774 [ANSWER]
**********************
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    6.5      
 u = mean =    8      
 n = sample size =    40      
 s = standard deviation =    2      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -4.74341649      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -4.74341649   ) =    0.00000105072 [ANSWER]

