Find the values of h for which the vectors 2 4 1 6 7 3 and 8
Find the value(s) of h for which the vectors (2 -4 1), (-6 7 -3), and (8 h 4) are R-linearly independent. 2. Find the value(s) of k for which the vectors (1 -1 3), (-5 7 8), and (1 1 k) are R-linearly dependent.
Solution
1.
Let
a(2,-4,1)\'+b(-6,7,-3)\'+c(8,h,4)\'=0
2a-6b=8
a-3b=4 ,a=3b+4
-4a+7b=h
-4(3b+4)+7b=h
-15b-16=h
-15b=-h+16
For linear indepdendence we need b=0 hence, h=16
So h must be 16
2.
Let,
a(1,-1,3)+b(-5,7,8)+c(1,1,k)=0
a-5b+c=0
a+7b+c=0
3a+8b+kc=0
First two equation give b=0
So,a=-c
3a+kc=0
-3c+kc=0
(k-3)c=0
So for k=3 , c can take any values
Hence, k=3 for the vectors to be linearly independent.
