Calculate the 99 percent confidence interval for the true me

Calculate the 99 percent confidence interval for the true mean metal thickness. (Round your answers to 4 decimal places.)

The Ball Corporation\'s beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation = 0.000952 mm. If a random sample of 59 sheets of metal resulted in an \"1formula131.mml\" = 0.3354 mm.

Solution

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    0.3354          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    0.000952          
n = sample size =    59          
              
Thus,              
Margin of Error E =    0.000319248          
Lower bound =    0.335080752          
Upper bound =    0.335719248          
              
Thus, the confidence interval is              
              
(   0.335080752   ,   0.335719248   ) [ANSWER]

Calculate the 99 percent confidence interval for the true mean metal thickness. (Round your answers to 4 decimal places.) The Ball Corporation\'s beverage can m

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site