x34x2 t 3 x 12 Solutionx3 4x2 3x 12 5x2 22x 8 x3 3x
     x3-4x2 t 3 x 12. ![x3-4x2 t 3 x 12. Solution(x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8) ==> [ x3 + 3x - 4x2 - 12 ] / [ 5x2 - 20x - 2x + 8 ] ==> [ x(x2 + 3) - 4(x2 + 3) ] / [ 5x(x  x3-4x2 t 3 x 12. Solution(x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8) ==> [ x3 + 3x - 4x2 - 12 ] / [ 5x2 - 20x - 2x + 8 ] ==> [ x(x2 + 3) - 4(x2 + 3) ] / [ 5x(x](/WebImages/27/x34x2-t-3-x-12-solutionx3-4x2-3x-12-5x2-22x-8-x3-3x-1071504-1761561340-0.webp) 
  
  Solution
(x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8)
==> [ x3 + 3x - 4x2 - 12 ] / [ 5x2 - 20x - 2x + 8 ]
==> [ x(x2 + 3) - 4(x2 + 3) ] / [ 5x(x - 4) - 2(x - 4) ]
==> [ (x2 + 3)(x - 4)] / [ (5x - 2)(x - 4)]
==> (x2 + 3)/(5x - 2)
Hence (x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8) = (x2 + 3)/(5x - 2)
![x3-4x2 t 3 x 12. Solution(x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8) ==> [ x3 + 3x - 4x2 - 12 ] / [ 5x2 - 20x - 2x + 8 ] ==> [ x(x2 + 3) - 4(x2 + 3) ] / [ 5x(x  x3-4x2 t 3 x 12. Solution(x3 - 4x2 + 3x - 12) /(5x2 - 22x + 8) ==> [ x3 + 3x - 4x2 - 12 ] / [ 5x2 - 20x - 2x + 8 ] ==> [ x(x2 + 3) - 4(x2 + 3) ] / [ 5x(x](/WebImages/27/x34x2-t-3-x-12-solutionx3-4x2-3x-12-5x2-22x-8-x3-3x-1071504-1761561340-0.webp)
