in a recent study of 42 eighth graders the mean number of h
in a recent study of 42 eighth graders , the mean number of hours per week that they watched television Was 19.6. assume the population standard deviation is 5.8 hours. find the 98% confidence interval for the population mean.
 in a recent study of 42 eighth graders , the mean number of hours per week that they watched television Was 19.6. assume the population standard deviation is 5.8 hours. find the 98% confidence interval for the population mean.
 in a recent study of 42 eighth graders , the mean number of hours per week that they watched television Was 19.6. assume the population standard deviation is 5.8 hours. find the 98% confidence interval for the population mean.
Solution
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.01          
 X = sample mean =    19.6          
 z(alpha/2) = critical z for the confidence interval =    2.326347874          
 s = sample standard deviation =    5.8          
 n = sample size =    42          
               
 Thus,              
               
 Lower bound =    17.51801303          
 Upper bound =    21.68198697          
               
 Thus, the confidence interval is              
               
 (   17.51801303   ,   21.68198697   ) [ANSWER]

