prove that Sin x sin y sin z 14 sin xyzsin yzxsinzxy sin
prove that:
Sin x . sin y . sin z= 1/4 {sin (x+y-z)+sin (y+z-x)+sin(z+x-y) - sin (x+y+z)}
Solution
Sin x . sin y . sin z= 1/4 {sin (x+y-z)+sin (y+z-x)+sin(z+x-y) - sin (x+y+z)}
RHS 1/4 {sin (x+y-z)+sin (y+z-x)+sin(z+x-y) - sin (x+y+z)}
using sin(A+B), sin(A-B) , cos(A+B) and cos(A-B) trig identities.
= 1/4{ sin(x+y)cosz -cos(x+y)sinz + sin(y+z)cosx - cos(y+z)sinx + sin( z+x)cosy -cos(z+x)siny - sin(x+y)cosz +cos(x+y)sinz }
common terms getting cancelled
=1/4{sin(y+z)cosx - cos(y+z)sinx + sin( z+x)cosy -cos(z+x)siny}
= 1/4{ cosx( sinycosz +cosysinz) - sinx( cosycosz - sinysinz) + cosy(sinzcosx +sinxcosz) - siny( coszcosx - sinxsinz) }
common terms getting cancelled
= 1/4 { cosxcosysinz +sinxsinysinz + cosysinzcosx + sinxsinysinz}
= 1/4 (2sinxsinysiz + cosx( cosysinz +cosysinz)
= sinxsinysinz
LHS
