Solve by the method of Laplace Transform y 2y 5y 3ex sinx

Solve by the method of Laplace Transform

y\'\' + 2y\' + 5y = 3e-x sin(x) , y(0) = 0 , y0 (0) = 3

Solution

Taking Laplace Transform of the given equation

L[ y\'\' ] + 2L[ y\' ] + 5L[ y ] = L[ 3e-x sin(x) ]

s2Y - s.y(0) - y\'(0) + 2Y + 5Y = 3/( (s + 1)2 + 1 )

Plugging the given values of y(0) = 0 and y\'(0) = 3

s2Y - 3 + 2sY + 5Y = 3/( (s + 1)2 + 1 )

Y( s2 + 2s + 5 ) = 3 + ( 3/( (s + 1)2 + 1 ) )

Y = 1/( s2 + 2s + 5 ) ( 3 + ( 3/( (s + 1)2 + 1 ) ) )

Taking Inverse Laplace Transform

y(t) = e-t( sin(t) + sin(2t) )

Solve by the method of Laplace Transform y\'\' + 2y\' + 5y = 3e-x sin(x) , y(0) = 0 , y0 (0) = 3SolutionTaking Laplace Transform of the given equation L[ y\'\'

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site