Assume there are 21 homes in the Quail Creek area and 9 of t
Assume there are 21 homes in the Quail Creek area and 9 of them have a security system. Six homes are selected at random:
What is the probability all six of the selected homes have a security system? (Round your answer to 4 decimal places.)
What is the probability none of the six selected homes has a security system? (Round your answer to 4 decimal places.)
What is the probability at least one of the selected homes has a security system? (Round your answer to 4 decimal places.)
| Assume there are 21 homes in the Quail Creek area and 9 of them have a security system. Six homes are selected at random: | 
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(x) = C(N-K, n-x) C(K, x) / C(N, n)          
           
 where          
 N = population size =    21      
 K = number of successes in the population =    9      
 n = sample size =    6      
 x = number of successes in the sample =    6      
           
 Thus,          
           
 P(   6   ) =    0.001547988 [ANSWER]
***************
b)
Note that the probability of x successes out of n trials is          
           
 P(x) = C(N-K, n-x) C(K, x) / C(N, n)          
           
 where          
 N = population size =    21      
 K = number of successes in the population =    9      
 n = sample size =    6      
 x = number of successes in the sample =    0      
           
 Thus,          
           
 P(   0   ) =    0.017027864 [ANSWER]
**************
c)
P(at least one) = 1 - P(0) = 1 - 0.017027864
= 0.982972136 [ANSWER]

