rx x2 2x 3 State the Domain and the Range in Interval Notat
r(x) =
x2 2x 3
State the Domain and the Range in Interval Notation
| 4x2 |
| x2 2x 3 State the Domain and the Range in Interval Notation |
Solution
r(x) = 4x^2 /( x^2 -2x -3)
Domain: all real values of x for which function exists:
Points where denominator is zero, function does not exist.
So, x^2 -2x -3 =0 -----> x^2 +3x -x -3 =0
x(x+3) -1(x+3) =0 -----> (x-1)(x+3) =
x=1 and x=3
Domain: ( - infinity , 1) U ( 1 , 3) U ( 3, infinity)
Range : Find inverse of 4x^2 /( x^2 -2x -3)
Inverse : ( x- 2 sqrt(x-3) )/(x-4) ; ( x + 2 sqrt(x-3) )/(x-4)
Find domain of inverse functions: Domain of ( x- 2 sqrt(x-3) )/(x-4) ---->( -inf, 0) or [3, 4) U ( 4, infinity)
Domain of ( x+ 2 sqrt(x-3) )/(x-4) ---->( -inf, 0) or [3, 4) U ( 4, infinity)
So, Range of original function is same as domain of inverse function:
Range : ( -inf, 0) or [3, 4) U ( 4, infinity)
