PART 1 INSTRUCTIONS 1 write a user defined void method named

PART 1:
INSTRUCTIONS
:
(1) write a user defined void method named newrap to find the root(s) of a non-linear function/equation. This method should call upon user defined methods to:
a. evaluate the function/equation @ (x,y)
b. calculate the derivative
c. calculate the root
(2) write a main method driver to test you newrap method.
(3) run your program for three non-linear functions/equations of your choice using three different starting points.
(4) displays (appropriately formatted/tabulated):
a. the function/being solved

b. the values of n, xn> f(xn), f\'(xn), x,w, as the solution converges

c. the root(s), if found, or a message indicating non-convergence, a singularity, or iteration limit reached.
NOTES:
(1) You may linearize your function if you so desire.

(2) Stop iterating when the difference in successive approximations is <=le-06 or 50 iterations max, whichever comes first.
PART 2:
Same as part 1 but you must use another/different iterative method/algorithm to find the root(s).

Solution

function root = iterative(f,interval)
   root = fzero(f,interval)
end

f = @x.^3 - 2*x - 5;
interval = [0,5]
root = iterative(f,interval);
disp(\'Root: \',root);

----------------------------------------------------------

function root = bisection(f,firstInterval,secondInterval)
   if f(firstInterval)*f(secondInterval)>0 %if no roots
       disp(\'Wrong choice\')
   else
       root = (firstInterval + secondInterval)/2; %getting mid root value
       err = abs(f(root));
       while err > 1e-7
           if f(firstInterval)*f(p)<0
           secondInterval = root;
           else
           firstInterval = root;
           end
           root = (firstInterval + secondInterval)/2;
           err = abs(f(root));
       end
   end
end  


f = @x.^3 - 2*x - 5;
root = bisection(f,0,5);
disp(\'Root: \',root);

PART 1: INSTRUCTIONS: (1) write a user defined void method named newrap to find the root(s) of a non-linear function/equation. This method should call upon user

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site