00 00 Solutiona Let mu be the population mean Null hypothesi

00

00

Solution

(a) Let mu be the population mean

Null hypothesis: mu=1700

Alternative hypothesis: mu<1700

-----------------------------------------------------------------------------------------------------

(b)

The degree of freedom =n-1=32-1=31

Given a=0.05, the critical value is t(0.05, df=31) = -1.696 (from student t table)

The test statistic is

t=(xbar-mu)/(s/vn)

=(1650-1700)/sqrt(250/32)

=-17.89

Since t=-17.89 is less than -1.696, we reject the null hypothesis.

-----------------------------------------------------------------------------------------------------

(c) (Xbar-mean)/(s/vn) = -1.696

--> (Xbar- 1700)/sqrt(250/32) = -1.696

--> Xbar = 1700 -1.696*sqrt(250/32) =1695.26

So the power= P(xbar >1695.26)

=P(t with df=31>(1695.26-1692)/sqrt(250/32))

=P(t with df=31>1.17) =0.1255 (from student t table)

-----------------------------------------------------------------------------------------------------

(d)increase sample size.

00 00 Solution(a) Let mu be the population mean Null hypothesis: mu=1700 Alternative hypothesis: mu<1700 ----------------------------------------------------

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site