Assume that X is normal with mean 10 and standard deviation

Assume that X is normal with mean 10 and standard deviation 3. Find the value x such that:

Please show step by step

Assume that X is normal with mean 10 and standard deviation 3. Find the value r such that (a) P(X >x) 0.5 (b) P(X > x) = 0.95 (c) P(z

Solution

A)

First, we get the z score from the given left tailed area. As          
          
Left tailed area = 1 - 0.5 =    0.5      
          
Then, using table or technology,          
          
z =    0      
          
As x = u + z * s,          
          
where          
          
u = mean =    10      
z = the critical z score =    0      
s = standard deviation =    3      
          
Then          
          
x = critical value =    10   [ANSWER]  

*********************

b)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.05      
          
Then, using table or technology,          
          
z =    -1.644853627      
          
As x = u + z * s,          
          
where          
          
u = mean =    10      
z = the critical z score =    -1.644853627      
s = standard deviation =    3      
          
Then          
          
x = critical value =    5.065439119   [ANSWER]

***********************

c)

First, we get the z score of the right endpoint. As          
          
x2 = right endpoint =    10      
u = mean =    10      
s = standard deviation =    3      
          
Thus,          
          
z2 = (x2 - u) / s = right endpoint z score =    0      
          
Thus, by table/technology, the left tailed area of the right endpoint is          
          
P(z<z2) =    0.5      
          
Thus, the left tailed area of the left endpoint is given by          
P(z1<z<z2) =    0.2      
P(z<z1) = P(z<z2) - P(z1<z<z2) =    0.3      
          
Using table or technology, we see that          
z1 = z score of left endpoint =    -0.524400513      
Thus,          
          
x1 = u + z1*s =    8.426798462   [ANSWER]

*********************

d)

The mean of X - 10 is 10-10 = 0, with the same standard deviation, 3.

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.95      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.025      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -1.959963985      
By symmetry,          
z2 =    1.959963985      
          
As          
          
u = mean =    0      
s = standard deviation =    3      
          
Then          
          
x1 = u + z1*s =    -5.879891954      
x2 = u + z2*s =    5.879891954      
  
Thus, x = x2 =    5.879891954. [ANSWER]

***********************

e)

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.99      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.005      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -2.575829304      
By symmetry,          
z2 =    2.575829304      
          
As          
          
u = mean =    0      
s = standard deviation =    3      
          
Then          
          
x1 = u + z1*s =    -7.727487911      
x2 = u + z2*s =    7.727487911      

Thus,

x = x2 = 7.727487911 [ANSWER]

Assume that X is normal with mean 10 and standard deviation 3. Find the value x such that: Please show step by step Assume that X is normal with mean 10 and sta
Assume that X is normal with mean 10 and standard deviation 3. Find the value x such that: Please show step by step Assume that X is normal with mean 10 and sta
Assume that X is normal with mean 10 and standard deviation 3. Find the value x such that: Please show step by step Assume that X is normal with mean 10 and sta

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site