Given 2m2b2m b2m2 1m14m22mm2 m23 with b2 14 Find the gener
Given
(2m)2b2m +b2m2 = (1)m+14m/22m(m!)2
m=2,3,...
with b2 = 1/4. Find the general formula for b2m.
Solution
Gven that
(2m)2 b2m + b2m-2 = [ (-1)m+1 4m] /[ 22m (m!)2]
(2m)2 b2m = {[ (-1)m+1 4m] / [22m (m!)2]} - b2m-2
b2m = {[ (-1)m+1 4m] / 22m (m!)2] - [b2m-2 ]} / (2m)2
= {[ (-1)m+1 4m] / 22m (m!)2] - [b2m-2 ]} / 4m2
= {[ (-1)m+1 ] / 22m m(m!)2] - [ b2m-2 / 4m2 ]
Therefore,
general formula for b2m = {[ (-1)m+1 ] / 22m m(m!)2] - [ b2m-2 / 4m2 ]
![Given (2m)2b2m +b2m2 = (1)m+14m/22m(m!)2 m=2,3,... with b2 = 1/4. Find the general formula for b2m.SolutionGven that (2m)2 b2m + b2m-2 = [ (-1)m+1 4m] /[ 22m (m Given (2m)2b2m +b2m2 = (1)m+14m/22m(m!)2 m=2,3,... with b2 = 1/4. Find the general formula for b2m.SolutionGven that (2m)2 b2m + b2m-2 = [ (-1)m+1 4m] /[ 22m (m](/WebImages/27/given-2m2b2m-b2m2-1m14m22mm2-m23-with-b2-14-find-the-gener-1072905-1761562282-0.webp)