A simple random sample of size n is drawn from a population
Solution
2A.
The point estimate of the population mean is the sample mean, x-bar. Thus,
ANSWER: 59.2 [ANSWER, C]
***************
2B.
significance level = 1 - confidence level
Thus,
significance level = 1 - 0.95 = 0.05 or 5% [ANSWER, B]
*******************
2C.
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    59.2          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    3.8          
 n = sample size =    45          
               
 Thus,              
               
 Lower bound =    58.26823885          
 Upper bound =    60.13176115          
               
 Thus, the confidence interval is              
               
 (   58.26823885   ,   60.13176115   )
or (58.3, 60.1) [ANSWER, A]
*************************
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    59.2          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    3.8          
 n = sample size =    55          
               
 Thus,              
               
 Lower bound =    58.35719033          
 Upper bound =    60.04280967          
               
 Thus, the confidence interval is              
               
 (   58.35719033   ,   60.04280967   )
or (58.4, 60.0) [OPTION C]
****************************
2E.
As we can see, it becomes NARROWER. [OPTION C]


