If A00 B50 Cs4 and Dr4 are the vertices of a rhombus contain
If A(0,0) B(5,0), C(s,4), and D(r,4) are the vertices of a rhombus contained entirely in the first quadrant, determine r and s
Solution
in rhombus length of AB=BC=CD=AD
AB=((5-0)2+(0-0)2) =5
BC=((s-5)2+(4-0)2)=((s-5)2+16)
AD=((r-0)2+(4-0)2)=(r2+16)
BC=AB
=>((s-5)2+16) =5
squaring on both sides
=>((s-5)2+16) =52
=>(s-5)2+16 =25
=>(s-5)2=9
=>s-5=-3, s-5=3
=>s=5-3 ,s=5+3
=>s=2, s=8
AD=AB
=>(r2+16) =5
=>(r2+16)=52
=>r2=9
=>r=3
possible value are C(2,4),D(3,4) and C(8,4),D(3,4)
if C(2,4),D(3,4) , CD=[(3-2)2+(4-4)2] =1 , but CDAB
if C(8,4),D(3,4) , CD=[(3-8)2+(4-4)2] =5 , CD=AB
So , r =3,s=8 makes vertices of rhombus
