Use a halfangle formula to find the exact value of sin 5 pi8
Use a half-angle formula to find the exact value of sin 5 pi/8.
Solution
sin(5pi/8)
Now use half angle formula :
sin(x/2) = sqrt[ (1+cosx)/2]
Now we need value of cos(5pi*2/8) = cos5pi/4 to plug in formula
So, cos5pi/4 = cos(pi +pi/4) = - cospi/4 = - 1/sqrt2
So, sin( 5pi/8) = sqr[( 1+ cos5pi/4)/2]
= sqrt[ (1- 1/sqrt2)/2]
= sqrt(sqrt2 -1)/2
![Use a half-angle formula to find the exact value of sin 5 pi/8. Solutionsin(5pi/8) Now use half angle formula : sin(x/2) = sqrt[ (1+cosx)/2] Now we need value Use a half-angle formula to find the exact value of sin 5 pi/8. Solutionsin(5pi/8) Now use half angle formula : sin(x/2) = sqrt[ (1+cosx)/2] Now we need value](/WebImages/27/use-a-halfangle-formula-to-find-the-exact-value-of-sin-5-pi8-1073388-1761562618-0.webp)