Use inference rules to show that the following Boolean expre

Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow p

Solution

Tautology :-

A Boolean expression is a tautology if and only if for all possible assignments of truth values to its variables its truth value is True.

Solution :-

Given Boolean Expression :- (( P & ¬( ¬P Q)) (P & Q)) P

Let us consider...

( P & ¬( ¬P Q)) = A

(P & Q) = B

Therefore... (( P & ¬( ¬P Q)) (P & Q)) = A B

Finally... (( P & ¬( ¬P Q)) (P & Q)) P =  (A B) P

Truth Table
P ¬P Q (¬PQ) ¬(¬PQ) A B A B (A B) P
True False True True False False True True True
True False False False True True False True True
False True True True False False False False True
False True False True False False False False True
 Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow pSolution

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site