Use inference rules to show that the following Boolean expre
     Use inference rules to show that the following Boolean expression is always true (a tautology).  [(p Lambda not(not p V q) V (p Lambda q))] rightarrow p  
![Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow pSolution  Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow pSolution](/WebImages/27/use-inference-rules-to-show-that-the-following-boolean-expre-1073430-1761562651-0.webp) 
  
  Solution
Tautology :-
A Boolean expression is a tautology if and only if for all possible assignments of truth values to its variables its truth value is True.
Solution :-
Given Boolean Expression :- (( P & ¬( ¬P Q)) (P & Q)) P
Let us consider...
( P & ¬( ¬P Q)) = A
(P & Q) = B
Therefore... (( P & ¬( ¬P Q)) (P & Q)) = A B
Finally... (( P & ¬( ¬P Q)) (P & Q)) P = (A B) P
| P | ¬P | Q | (¬PQ) | ¬(¬PQ) | A | B | A B | (A B) P | 
| True | False | True | True | False | False | True | True | True | 
| True | False | False | False | True | True | False | True | True | 
| False | True | True | True | False | False | False | False | True | 
| False | True | False | True | False | False | False | False | True | 
![Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow pSolution  Use inference rules to show that the following Boolean expression is always true (a tautology). [(p Lambda not(not p V q) V (p Lambda q))] rightarrow pSolution](/WebImages/27/use-inference-rules-to-show-that-the-following-boolean-expre-1073430-1761562651-0.webp)
