A sample of 9 customers in dollars spent for lunch for fastf
A sample of 9 customers in dollars spent for lunch for fast-food:
4.20 5.03 5.89 6.45 7.38 7.54 8.46 8.47 9.87
a. Compute the mean and median.
b. Compute the variance, standard deviation, range, and co-efficient of variation.
c. Are the data skewed? How?
d. Based on the results of a through c, what conclusions can you reach concerning the amount customers spent on lunch?
Solution
a)
Getting the mean, X,          
           
 X = Sum(x) / n          
 Sum(x) =    63.29      
           
 Thus,          
 X =    7.032222222   [answer, mean]
Ordering them,
4.2
 5.03
 5.89
 6.45
 7.38
 7.54
 8.46
 8.47
 9.87
Thus, the median is the 5th term,
median = 7.38 [answer, median]
********************
Setting up tables,          
 x   x - X   (x - X)^2  
 4.2   -2.832222222   8.021482716  
 5.03   -2.002222222   4.008893827  
 5.89   -1.142222222   1.304671605  
 6.45   -0.582222222   0.338982716  
 7.38   0.347777778   0.120949383  
 7.54   0.507777778   0.257838272  
 8.46   1.427777778   2.038549383  
 8.47   1.437777778   2.067204938  
 9.87   2.837777778   8.052982716  
           
           
 Thus, Sum(x - X)^2 =    26.21155556      
           
 Thus, as           
           
 s^2 = Sum(x - X)^2 / (n - 1)          
           
 As n =    9      
           
 s^2 =    3.276444444   [answer, variance]
           
 Thus,          
           
 s =    1.810095148   [answer, standard deviation]
Also, we have      
       
 Maximum =    9.87  
 Minimum =    4.2  
 Range = max - min =    5.67   [answer, range]
coefficient of variation = s / mean = 0.257400163 [answer]
********************
c) slightly, as median > mean. Hence, it is skewed to the left.
*****************
d)
The mean amount spent is $7.03, but the median amount is $7.38, which indicates that more people spend amount greater than $7.03 than below 7.03.
   


