The breakdown voltage of a randomly chosen diode of a certai
Solution
A)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    39      
 x2 = upper bound =    42      
 u = mean =    40      
           
 s = standard deviation =    1.5      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.666666667      
 z2 = upper z score = (x2 - u) / s =    1.333333333      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.252492538      
 P(z < z2) =    0.90878878      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.656296243   [ANSWER]
*******************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    1 - 0.15 = 0.85      
           
 Then, using table or technology,          
           
 z =    1.036433389      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    40      
 z = the critical z score =    1.036433389      
 s = standard deviation =    1.5      
           
 Then          
           
 x = critical value =    41.55465008   [ANSWER]
This is the 85th percentile.
*********************     
   
 c)
i)
It has the same mean
u(X) = 40
and variance of
sigma^2(X) = sigma^2/n = 1.5^2/9 = 0.25 [ANSWER]
********
ii)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    39.5      
 x2 = upper bound =    41      
 u = mean =    40      
           
 s = standard deviation =    0.25      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2      
 z2 = upper z score = (x2 - u) / s =    4      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.999968329      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.977218197   [ANSWER]  


